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Three applications of scaling to inhomogeneous, anisotropic turbulence

Piero Olla
Instituto per lo Studio dell’ Inquinamento Atmosferico, Consiglio Nazionale delle Ricerche, Universita` di Lecce, 73100 Lecce, Italy

~Received 1 August 1997!

The energy spectrum in three examples of inhomogeneous, anisotropic turbulence, namely, purely mechani-
cal wall turbulence, the Bolgiano-Obukhov cascade, and helical turbulence, is analyzed. As one could expect,
simple dimensional reasoning leads to incorrect results and must be supplemented by information on the
dynamics. In the case of wall turbulence, a hypothesis of Kolmogorov cascade, starting locally from the
gradients in the mean flow, produces an energy spectrum that obeys the standardk25/3 law only for kx3.1,
with x3 the distance from the wall, and an inverse power law forkx3,1. An analysis of the energy budget for
turbulence in stratified flows shows the unrealizability of an asymptotic Bolgiano scaling. Simulation with a
Gledzer-Ohkitani-Yamada shell model leads instead to ak2a spectrum for both temperature and velocity, with
a.2, and a cross correlation between the two vanishing at large scales. In the case of non-reflection-invariant
turbulence, closure analysis suggests that a purely helical cascade, associated with ak27/3 energy spectrum
cannot take place, unless external forcing terms are present at all scales in the Navier-Stokes equation.
@S1063-651X~98!08002-7#

PACS number~s!: 47.27.Nz, 47.27.Te
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I. INTRODUCTION

Turbulence in nature is always inhomogeneous; the
son is the origin of the fluctuations, either in the instability
flow patterns, or in the presence in some finite volume,
temperature gradients, chemical reactions, or external
ring. If the Reynolds number is large, however, there
turbulent fluctuations at scales much smaller than that of
forcing, and to them, the idealization known as homo
neous isotropic turbulence can be applied.

In practical applications, what one is interested in is
effect of turbulence on the mean flow and on transp
which is parametrized in terms of eddy viscosities and dif
sivities ~see, e.g.,@1#!. In some cases, in order to calcula
these quantities, some information on the turbulent ene
spectrum is necessary, and Kolmogorov scaling@2# is usually
assumed. For instance, in the derivation of Lagrangian di
sion models@3,4#, the Kolmogorov scaling hypothesis
present explicitly through the assumption of Markovian v
locity increments, at time scales below that of the ene
containing eddies.

What becomes necessary then is some matching cond
at the transition from the inertial range~small scale! to the
energy containing range~forcing scale!; this is essentially the
problem of connecting a region ofk25/3 scaling to the peak
in the energy spectrum. Phenomenological theories h
dealt with this problem@5#; more recently, the question o
how fast the effect of inhomogeneity decays at small sca
has been put under examination both theoretically and u
reduced models@6,7#.

There are situations, however, in which the problem
how far the inertial range preserves memory of the inhom
geneity of the forcing, becomes particularly serious.

The most obvious way this can happen is when forc
takes place at all scales. Notice that this does not necess
require the presence, for example, of obstacles of co
sponding sizes in the flow. Already in the case of wall tu
bulence@5# one has mean flow gradients at lengths rang
from the viscous range to the height of the boundary lay
which leads to a situation of coexisting ‘‘energy range’’ a
571063-651X/98/57~3!/2824~8!/$15.00
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‘‘inertial range’’ eddies, distributed at all scales.
An extended forcing range develops clearly, also in

presence of stratification, due to the effect of buoyancy.
this case an additional scale, the Obukhov length@8#, mark-
ing the transition from mainly mechanical to convectio
dominated turbulence, becomes important, and the wa
which mechanical and convective contributions to the d
namics balance one another makes a description base
scaling rather nontrivial.

A third way in which the small scale dynamics of turb
lence could be modified by processes in the energy rang
when helicity is fed, together with energy, into the syste
The importance of this process has been discussed rec
by Yakhot @7#, in the case of shear turbulence. Since t
Navier-Stokes nonlinearity conserves both helicity and
ergy, one wonders whether there could exist situations c
acterized by a helicity cascade, analogous to the entro
cascade of two-dimensional turbulence@9,10#.

All this neglects the presence of coherent structures
intermittency, which make an approach based on scaling
a hypothesis of homogeneous and isotropic inertial ra
questionable, even in the idealized case of spatially homo
neous large scales@11–13#. The importance of hairpin vor-
tices in wall turbulence@14,15# and, even more, of plume
and effects at the boundary, in convective turbulence@16–
18# is well known. Helicity, on the other hand, has long be
suspected to play an important role in triggering interm
tency in homogeneous turbulence@19,20#.

It should be mentioned, however, that with the except
of convective turbulence, intermittency and coherent str
tures seem to produce only minimal effects on energy spe
and transport coefficients. For this reason, they are not v
interesting when it comes to deriving turbulent models
engineering applications.

The purpose of this paper is to study the behavior of
energy spectrum in the three examples of inhomogene
turbulence listed. Dimensional analysis must necessarily
supplemented by information on the dynamics, to produ
acceptable results. In wall turbulence, this will take the fo
of hypotheses on the distribution of vortices and on the w
2824 © 1998 The American Physical Society
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57 2825THREE APPLICATIONS OF SCALING TO . . .
they are generated. In the case of convective turbulence
analysis of the energy budget in the Navier-Stokes and
temperature equations becomes necessary to verify the
izability of different scaling hypotheses. In helical turb
lence, the same task is realized by means of closure ana
In the next section, wall turbulence is analyzed, assum
that at any height a Kolmogorov cascade is generated
the integral scale equal to the height in examination. In S
III, an analysis of the various possibilities for scaling in ‘‘ho
mogeneous’’ convective turbulence is carried out, using a
results from simulations of a Gledzer-Ohkitani-Yama
~GOY! shell model of the type introduced by Jensenet al.
@21#, plus buoyancy couplings. The scaling predicted by B
giano @22,23,8#, in particular, is taken under examinatio
Section IV is devoted to an analysis of helical turbulen
using an eddy damped quasinormal Markovian~EDQNM!
closure@24,10#. Section V contains the conclusions.

II. WALL TURBULENCE

To fix the ideas imagine a turbulent flow parallel to
horizontal plane, characterized by a heightd and a stress a
the surface~for unitary fluid density! v

*
2 . If the Reynolds

number Re5v* d/n is very large, withn the fluid viscosity,
the mean velocityV will obey to a very good degree o
approximation the logarithmic profile law@5#

V1~x3!5
v*
k

lnS v* x3

bn D , r 0!x3!d, ~1!

wherek andb are dimensionless constants depending on
roughness of the wall,r 05n/v* is the flow inner length, and
x3 is the distance from the wall. The law of the wall, Eq.~1!,
does not provide information about turbulent fluctuations
yond what could be obtained from a mixing length appro
mation, indicating byv the turbulent velocities

^v1v3&52nT

]V1

]x3
, nT5 lvT , ~2!

where the eddy sizel , the characteristic turbulent velocit
vT , and the eddy viscositynT all depend on the heightx3. In
a scale invariant situation, using Eqs.~1! and ~2!,

l ~x3!;x3 and vT;v* , ~3!

which means simply that gradients of strengthx3
21v* at

scalex3 lead to vortices of sizex3 and characteristic velocity
v* . If one imagines that these vortices generate Kolmogo
cascades, spatially localized in height, some idea of the
havior of the energy spectrum can be obtained.

This idea is not totally unreasonable, since, during
time it takes the energy to be transferred to the viscous ra
that is of the order of an integral time, eddies will move
most by a distance of the order of an integral length;x3.

Consider then the following picture~see Fig. 1!: at a
given heightx3, eddies of sizel 0;x3 are generated by insta
bility of the mean flow. These ‘‘mother eddies’’ split int
‘‘daughter eddies’’ of sizel 0s, l 0, producing a Kolmogorov
cascade; the indexs indicates the point in the cascade and
the logarithm of the ratio of the size of the daughter eddy
that of the original mother eddy. To these, however, th
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will be superimposed mother eddies generated abovex3 and
which will have therefore sizel r. l 0;x3. Also these pro-
duce cascades superimposed on the original one, with da
ter eddies of sizel rs, l r , indicating

l rs5e2sl r5er2sx3 . ~4!

It is clear thats>0, but it is also true thatr>0. This last
condition means that, at heightx3, only mother eddies of size
l r>x3 are present; smaller ones are generated at lower
ues ofx3.

In the presence of a Kolmogorov cascade, one will ha
that the typical ratio of the velocity inside daughter a
mother eddies will be proportional to (l rs / l r)1/3exp(2r/lrs),
with r .(x3r 0

3)1/4 the viscous scale at heightx3. One can then
write for the velocity differencevl(x)[v(x1 l)2v(x):

vl~x!;(
i

S l r is i

l r i

D 1/3

exp~2r / l r is i
!ul~x,xi8,r i ,s i !, ~5!

where r,R5 ln(d/x3), and u(x,x8,r,s) is the normalized
velocity at positionx, due to a vortex of typers centered at
x8 (ul indicates finite difference with respect to the first a
gument!.

An assumption on the statistics ofu(x,x8,r,s) becomes
therefore necessary. Spatial correlations in this model
assumed to arise from the finite extension of individual e
dies, while distinct eddies are taken to be uncorrelated. T
leads to the expression

^u~x,x8r,s!u~y,y8,r8,s8!&

5v
*
2 d~r2r8!d~s2s8!d~x82y8!CS ux2yu

l rs
D , ~6!

with C( l rs
21ux2x8u) the normalized@C(0)51# autocorrela-

tion for a single vortex. In general, vortices will be distrib
uted with a densityn(x,r,s) l rs

2(32zrs) , with zrs allowing
for the inclusion of intermittency corrections in the mode
However, if r 0! l rs! l r!d, scale invariance impliesn
5n( l r

21x3), with n(1);1, while z50 for locally space fill-
ing ~nonintermittent! turbulence. Using Eq.~6!, the two-
point structure function can be computed explicitly:

FIG. 1. Generation of Kolmogorov-like cascade; forr.0, l r is
larger than the reference heightx3 at which the structure function
S( l ,x3) is being measured.
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S~ l ,x3!5v
*
22^v l

2&;E
0

R

drE
0

`

dsF„exp@ ln~ l /x3!2r

1s#…expF2
2

3
s2S r 0

x3
D 3/4

e3/4~s2r!G , ~7!

whereF(a)512C(a). Assuming smoothness of the velo
ity profile in an individual vortex and finiteness of its tot
energy leads to the conditions onF:

F~a!5O~a2! ~a!1!,

lim
a→`

a2@F~a!21#50. ~8!

For Re→`, one can then obtain asymptotic expressions
S( l ,x3). For l !x3!d, the integrals are dominated by th
contribution atr50 and s5 ln(x3 /l), i.e., the contribution
from the eddies down the cascade generated atx3, which
have sizel . In this way, Kolmogorov scaling arises:

S~ l ,x3!5aS l

x3
D 2/3

1OXS l

d D 2/3

,S l

x3
D 2C, l !x3!d.

~9a!

For l @x3 the dominant contribution is from mother eddi
with size x3< l r,min(l,d). Due to the uniform distribution
in r, this leads to a logarithmic form for the structure fun
tion:

S~ l ,x3!5
3

2
ln~ l /bx3!1OXS l

d D 2/3C, x3! l !d, ~9b!

S~ l ,x3!5
3

2
ln~d/bx3!1e~x3 / l !, x3!d! l , ~9c!

with e(x3 / l ) at mostO„(x3 / l )2
…. The coefficientsa and b

and the various higher order terms in Eqs.~9a!–~9c!, all
depend on the detailed shape of the functionF(a). The one-
dimensional energy spectrum@25# is Ek(x3)5*2`

1`@S(`,x3)
2S( l ,x3)#eikldl;u]S(k21,x3)/]ku in the inertial range.
Hence, one has a standardk25/3 scaling forl !x3 and ak21

scaling whenx3! l !d. A definite expression for the energ
spectrum can be obtained fixing the form of the autocorre
tion. TakingC(a)5exp(2a2), one obtains

Ek~x3!5p1/2v
*
2 x3E

0

R

drE
0

`

dsexpFr2
5

3
s

2
~kx3!2

4
e2~r2s!2S r 0

x3
D 3/4

e3/4~s2r!G . ~10!

A plot of this spectrum for different values ofx3 /d is shown
in Fig. 2. A fit of wind tunnel data, taken from@26#, is shown
in Fig. 3; the data correspond to values of the ratiosx3 /d
.0.01 andr 0 /d.0.001, i.e., to the experiment with Reu
57076 andy1528 illustrated in Fig. 1 of that reference.

As discussed in@26#, v l samples in the rangel @x3, ve-
locities corresponding to vortices generated much abovex3,
while for l !x3, it samples the daughter eddies of sizel
generated in the cascade started atx3. In @27#, a k21 scaling
was obtained by means of a hierarchy of hairpin vortices
r

-

f

prescribed shape, but the transition to thek25/3 range was
left out of the description. This phenomenon is explain
here as a natural consequence of implementing a Kolm
orov cascade in an inhomogeneous turbulence setting; in
cases, hairpin vortices, and coherent structures in genera
not seem to be essential in obtaining such scaling behav

The rangel @x3 is where turbulence ceases to be hom
geneous and isotropic. Notice that the divergence of^v1

2& as
x3 /d→0 in Eq.~9c! forces an implicit assumption of aniso
ropy in the model, in order to avoid inconsistency with E
~2!. Thus, althougĥ v1

2& diverges asx3 /d→0, ^v1v3& re-
mains equal tov

*
2 ; this result can be obtained assuming th

the velocity of vortices generated much abovex3 is almost
parallel to the wall atx3. Hence, whilê v1

2& receives contri-
butions from all vortices, up to sized, ^v1v3& receives con-
tribution only from vortices up to sizex3.

Although essentially kinematic, this model is dynamica
consistent. In spite of the fact that all cascades overlap
space, the dominant interactions appear to be those am

FIG. 2. One-dimensional energy spectra for four different valu
of x3 /d. a, x3 /d50.001; b, x3 /d50.01; c, x3 /d50.1; d, x3 /d
50.5. In all cases,d/r 0.105.

FIG. 3. Fit of wind tunnel data forx3 /d.0.01 and r 0 /d
.0.001. The curve is shifted to the left to overlap with the da
corresponding to a shift by. ln(3), of the limits of integration inr,
in Eqs.~7! and ~10!. Physically, this would correspond to a trans
tion to anisotropy atl .3x3.
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vortices of similar size, as in standard Kolmogorov theo
and belonging to the same cascade. A rough argument c
be the following. The relevant strain over an eddy of sizel ,
from a cascade starting at heightx3, is produced by eddies o
size l 8> l . This strain will be of the order of:
v* l 821( l 8/x38)

1/3 with x38 the height of generation of the se
ond cascade. Ifx38,x3, however, the volume in which th
interaction takes place will be reduced byx38/x3 and the ef-
fective strain will be of the order o
min(1,x38/x3)v* l 821( l 8/x38)

1/3. The effective strain will be
maximum then forx35x38 and l 5 l 8 corresponding to inter-
action with vortices of the same size and belonging to
same cascade.

III. THE CASE OF ‘‘INFINITE SPACE’’
CONVECTIVE TURBULENCE

Stratification in a fluid produces buoyant forces th
couple velocity and temperature in the Navier-Stokes eq
tion. In the limit of weak stratification in a large volume, on
can adopt the Boussinesq approximation@5#, in which the
buoyant force in the Navier-Stokes equation, and the prod
tion term in the temperature equation, are linearized resp
tively in the temperature and the vertical velocity fluctuatio
For a unitary density medium:

S ]

]t
1v•¹D v5¹P1n¹2v2gQ21e3u, ~11a!

S ]

]t
1v•¹D u5s¹2u1Q8v3 . ~11b!

Here, s is the molecular diffusivity,g is the gravitational
acceleration,u andQ are the fluctuating and mean potent
temperature, whileQ8[dQ/dx3. The equations are linearl
stable forQ8.0; in this case, external forcing is necessa
to achieve a stationary turbulent state.

In homogeneous isotropic turbulence, one derives K
mogorov scaling@2#, using dimensional analysis with th
quantities that are available: the scalel , the velocity differ-
ence v l and the mean~kinetic! energy dissipatione; this
leads to the well-known result^v l

2&;(e l )2/3. In the case of a
stably stratified medium, in the presence of mechanical fo
ing, Bolgiano@22,23# hypothesized an alternative situatio
in which, potential energy transfer due to buoyancy forc
rather than kinetic energy transfer, governs turbulence
namics. Dimensional reasoning with the quantities availa
in Eqs.~11a! and ~11b!, leads then to the scalings@8#

^v l
2&5CvvS g

Q D 4/5

eu
2/5l 6/5, ^v lu l&5CvuS g

Q D 1/5

eu
3/5l 4/5,

^u l
2&5CuuS g

Q D 22/5

eu
4/5l 2/5, ~12!

whereeu is the dissipation of temperature fluctuations:

eu5su¹uu2. ~13!

It is interesting to carry out this dimensional reasoning,
rectly inside Eqs.~11a! and~11b!. After introducing the eddy
,
ld

e

t
a-

c-
c-
.

l-

c-

,
y-
le

-

turnover frequencyv l; l ^v l
2&1/2 and considering scalesl

much larger than the dissipation lengths forv andu, we have
from Eq. ~11a!:

v l^v l
2&;

g

Q
^v lu l& and v l^v lu l&;

g

Q
^u l

2&, ~14!

while, from Eq.~11b!:

v l^v lu l&;
? Q8^v l

2& and v l^u l
2&;eu;

? Q8^v lu l&.
~15!

The question marks in Eq.~15! indicate places in which the
relation between terms is ambiguous. It appears that the
biguity lies in the source termQ8v3 in Eq. ~11b!. One sees
immediately that the scaling described in Eq.~12! is obtained
when the term inQ8 is negligible in Eqs.~11b! and ~15!.
Introducing the Obukhov length

L* 5eu
1/2Q825/4S Q

g D 1/4

, ~16!

one realizes from Eqs.~12! and~15! that the condition of the
negligibleQ8 term is equivalent tol !L* . Thus, one has a
source of temperature fluctuations atl<L* , whose energy is
transferred to smaller scales by action of the convective t
v•¹u. These fluctuations provide the forcing for the veloci
through the buoyant termge3u/Q, in Eq. ~11a!.

In order for a cascade of this form to be present,
transfer of kinetic energy must be negligible, or equivalen
the frequencyv l ~which is the strain felt by eddies at scalel )
must dominate the one that would be produced in a Kolm
orov cascade, indicating withe the rate of kinetic energy
production at the largest scales:

v l;vL
*
L

*
23/5l 22/5@e1/3l 22/3;vL

*
L

*
21/3l 22/3, ~17!

which impliesl @L* . Thus, the two conditions of negligible
Q8 in Eq. ~15! and dominant buoyant force in Eq.~14! re-
strict the possibility of Bolgiano scaling at most to a fini
range aroundL* .

An alternative situation, in which kinetic energy flow
towards large scales, has been considered in@28#. In this
case, the condition provided by Eq.~17! is not necessary
anymore; however, the condition of negligibleQ8 still forces
Bolgiano scaling, to the rangel ,L* . Now, this is the range
in which the equation for the velocity decouples from th
for the temperature, and it is difficult to see a mechani
whereby buoyancy could modify the nonlinear interaction
such a way as to invert the direction of the energy transfe
one restricts to this range, and maintains a situation of
ward energy transfer, the decoupling forces the tempera
to be advected like a passive scalar, which results in
well-known Kolmogorov-Corrsin scaling@29#:

^v l
2&5Cvv~e l !2/3, ^v lu l&5Cvueu

1/2e1/6l 2/3,

^u l
2&5Cuueue21/3l 2/3. ~18!

The only way to obtain a power law fluctuation spectra
l .L* remains then, that
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2828 57PIERO OLLA
^v lu l&;g21Qe;Q821eu . ~19!

This would lead again to al 2/3 spectrum for̂ v l
2& and^u l

2&; in
this case, however, there would be a privileged scale,
Obukhov length, which would fix the amplitude of the cro
correlation^v lu l&:

^v lu l&

~^v l
2&^u l

2&!1/2
;S L*

l D 2/3

. ~20!

This leads to the situation of correlations betweenv l andu l
being the strongest atl;L* and decaying at larger scales

From these observations, it is clear that scaling behav
should not be expected forl .L* . An interesting question is
then how a toy system simulating a large range of scales
a GOY model would behave in the presence of buoyan
GOY models~see@30# and references therein! present a cas
cade of energy along a linear chain of coupled ordinary
ferential equations for the complex variablesun , which are
the analog of the velocity of eddies at scalesl n522n in real
turbulence. These models have attracted great attention
to the coincidence of the intermittent properties of the m
ments^uunun& and those of the structure functions^v l

n& in
real turbulence. Jensenet al. @21# have derived a generaliza
tion to the case of a passive scalar advected by a turbu
velocity field. It is easy to include in their model the effect
buoyancy; the resulting set of equations reads (kn5 l n

21)

~] t2nkn
2!un5 ikn~aun11un121bun21un111cun21un22!*

2aTn1 f n ,

~] t2skn
2!Tn5 ikn@en~un21Tn111un11Tn21!

1g~un22Tn211un21Tn22!

1h~un11Tn121un12Tn11!#* 1bun

~21!

for n51,2, . . . ,N, where the parametersa,b,c,e,g,h are
given by

a51, b5c5g52e52h52
1

2
; ~22!

and variablesum andTm in the nonlinearities are set ident
cally equal to zero form,1 andm.N. The choice here is
opposite to that of@28#, in the sense that it has been preferr
not to tamper with the nonlinearities, and to leave them
the same form as without buoyancy. However, also in t
case, some interesting results are obtained.

Equations~21! and~22! have been integrated numerical
for both stable and unstable conditions. In the stable cas
constant forcingf n5(11 i )31023dn4 has been used to sus
tain fluctuations.

In the unstable case no external forcing was present,
the fluctuations organized in such a way to push
Obukhov scaleN* 5 log2(eT

21/2b5/4a21/4) towards the lowest
available shell; a Kolmogorov cascade ensued in all ca
~see Fig. 4!.

In the stable case, the presence of two additional par
eters with which to play, the forcing amplitude and wa
e

rs

e
y.

-

ue
-

nt

n
s

, a

nd
e

es

-

number, allowed better control ofN* . WhenN* was suffi-
ciently large, neither Bolgiano scaling nor the situation d
picted in Eq.~18! took place, rather, a combination of th
two, with steep;k21, overlappingT andu spectra, and an
almost constant cross correlation^unTn& ~see Fig. 5!.

An attempt has been carried also to generate a backw
kinetic energy cascade, using small scale forcing~the forced
shell wasn520). A physical interpretation of such a cond
tion could be the presence of plumes generated elsewhe
the fluid, in some steep thermal layer. Using Eqs.~21! and
~22!, the outcome was, however, ak25/3 spectrum in all situ-
ations.

One can compare the behavior ofN* in the two stability
situations, looking at the ratios of the fluctuation amplitud
of the buoyancy termsaTn and bun , to those of] tun and
] tTn . One sees in Fig. 6 how in the stable case, buoya
remains dominant over the whole inertial range, while t
nonlinearity dominates the dynamics in the unstable cas

In nature, of course, things go differently. First of all, th
largest available scalel 0 corresponds to the size of the sy
tem. In the unstable case, steep thermal boundary layers
velop rapidly and an approximation of constant temperat

FIG. 4. GOY model simulation of convective turbulence und
unstable conditions; values of the parameters area50.01, b5
20.2, n5s51027; no external forcing.a: ^uTnu2&; b: ^uunu2&; c:
^uunTnu&. The buoyancy terms become of the same order of
others only forkn<1.

FIG. 5. GOY model simulation of convective turbulence und
stable conditions; values of the parameters area5b510; n5s
51027, f n51023(11 i )dn4. a: ^uunTnu&; b: ^uunu2&; c: ^uTnu2&. The
buoyancy terms are of the same order of the others, over the w
range ofkn , down to the dissipation scale.
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gradient ceases to be applicable. Thus, the left portion of
spectra in Fig. 4 is not particularly meaningful, and the p
diction thatL*→ l 0 under unstable conditions should not
trusted. In fact, in convective atmospheric turbulence, o
hasL* , l 0, and a large scale, buoyancy dominated rang
indeed present@31#.

Same amount of difficulty occurs in the treatment
stable environments. In this case the problem is the idea
purely large scale mechanical forcing. It is well known th
in these conditions, the large scale modes in turbulent s
layers are stabilized by buoyancy; thus, the peak in the fo
ing is moved tol;L* , and a range like that of Fig. 4 is no
generated@31#. However, a purely large scale forcing can
generated, if low frequency waves are present in the flows
this case, a turbulent spectrum extending to the buoya
dominated regionl ,L* becomes possible again~see, e.g.,
@32#!.

IV. POSSIBILITY OF A PURELY HELICAL CASCADE

The last situation that is taken into consideration is tha
non-reflection-invariant turbulence. It is well known that, b
yond energy, the nonlinearity of the Navier-Stokes equat
has a second global invariant, the total helicity:

H5
1

2E d3xv~x!•@¹3v~x!#. ~23!

In many ways, helicity is the counterpart in three dimensio
of two-dimensional vorticity, and a natural question to ask
whether three-dimensional turbulence may exhibit multi
cascades, as it happens in two dimensions. The ability
helicity to hinder energy transfer@33,10#, in particular, sug-

FIG. 6. Plots of the ratios:r 15^uaTnu2&/^u] tunu2& and r 2

5^ubunu2&^u] tTnu2& vs kn . a: r 1; stable.b: r 2; stable.c: r 1; un-
stable.d: r 2; unstable.
e
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e
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f
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,
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gests the possibility of a helicity cascade with no ene
transfer, given appropriate conditions on the forcing.

Helicity, however, has the peculiarity of being a nonpo
tive defined pseudoscalar. Lack of positive definiteness
plies, in particular, that any triad of interacting modes c
exchange helicity in an arbitrary way, thus providing
source of helicity transfer fluctuations.

This effect turns out to be important in GOY model
even in the case of maximum injection of helicity, for
given energy injection rate, it can be shown that the amo
of the GOY equivalent of helicity:H5(n(2kn)nuunu2 @20#,
which is produced by fluctuations, is much greater than
one coming from forcing@34#. Since the variableun in GOY
models mimics in a surprising way the velocity inside ind
vidual scalel n eddies, this may be a serious indication of t
impossibility of a helicity cascade.

Anyway, such a cascade seems impossible, also i
purely ‘‘mean field’’ description, with a helicity transfer to
small scales, assumed constant over the whole space.

The standard sequence of arguments, leading to Kolm
orov scaling, can be carried out, assuming a constant hel
flux eH to small scales; indicating withHl; l 21v l

2 the con-
tent of helicity at scalel one can then write

eH;v lHl; l 22v l
35const.⇒v l;eH

1/3l 2/3 ~24!

implying expressions for the energy and helicity spectra a
for the eddy turnover frequency:

Ek5c1eH
2/3k27/3, Hk5c2eH

2/3k25/3, vk5c3eH
1/3k1/3.

~25!

It is possible to obtain energy and helicity balance equati
using statistical closure, starting from the expression for
velocity correlationUk

i j 5^uvk
i v2k

j u&:

2pUk
i j 5k22Pi j ~k!Ek1k24e i j l klHk , Pi j ~k!5d i j 2

kikj

k2 .

~26!

Lesieur has derived such balance equations within
EDQNM closure@10#. In this kind of closure@24,10#, the
third order correlationŝvvv&, which enter the equation fo
Uk

i j , are approximated by: ^vvv&.^v (1)v (0)v (0)&
1^v (0)v (1)v (0)&1^v (0)v (0)v (1)&, with v (1) the first order per-
turbative solution to a modified Navier-Stokes equation, w
the viscous termnk2 replaced by the eddy turnover fre
quencyvk . The v (0) are taken uncorrelated, so that the r
sulting 4-point correlations split into products of 2-point co
relations. Furthermore, the approximation^uvk

i (t)v2k
j (0)u&

.Uk
i j exp(2vkutu) is adopted.

The EDQNM equations for the energy and helicity ba
ance read therefore@10#
S ]

]t
12nk2DEk5E

Dk

dpdqukpqF k

pq
bkpqEq~k2Ep2p2Ek!2

1

p2q
ckpqHq~k2Hp2p2Hk!G ~27a!

and

S ]

]t
12nk2DHk5E

Dk

dpdqukpqF k

pq
bkpqEq~k2Hp2p2Hk!2

k2

q
ckpqHq~k2Ep2p2Ek!G , ~27b!
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where

ukpq5~vk1vp1vq!21, bkpq5
p

k
~xy1z3!,

ckpq5z~12y2! ~28!

with Dk the domain in whichk, p, andq can be the lengths
of the sides of a triangle, andx, y, andz the cosines of the
angles opposite to these sides.

The conditioneH5const in Eqs.~24! and ~25! and con-
servation of helicity triad by triad guarantee that the spec
and frequencies of Eq.~25! provide a stationary solution fo
Eq. ~27b! for any value of the coefficientsci . The energy
balance, which is given by Eq.~27a! fixes instead, at station
arity, the ratio of the two coefficientsc1 andc2. Numerical
integration of that equation leads then to the result

c2

c1
.3.316. ~29!

However, from the definition of helicity, one has

k21uHku52pk^u@ ik3vk#•v2ku&<Ek52pk2^uvku2&,
~30!

which implies uc2u<c1. Thus, Eq.~29! cannot be satisfied
and a helicity cascade of the type described by Eqs.~24! and
~25! does not seem to be possible.

V. CONCLUSIONS

The aim of this paper was to obtain some information
the effect of large scale flow inhomogeneities on the form
the energy spectra in turbulent fluids. Some idealized si
tions have been studied by means of simplified models
closure analysis. The point in common in the three inhom
geneous turbulence situations considered is that simple
mensional reasoning either gives wrong answers or does
lead to any answer at all. Of course this was something to
expected and, in a certain sense, there is nothing deep in
result. However, the practical consequences are importa

The analysis carried on here clearly shows that ak21

range is a universal feature of mechanical turbulent lay
which is independent of the presence of coherent structu
If one is interested in diffusion in wall turbulence situation
ak21 range at scaleskx3,1 clearly makes a difference, wit
respect to ak25/3 spectrum, extending down to the inverse
the boundary layer thickness. Particles at distancel .x3 will
a

n
f
a-
d
-
i-
ot
e

his
.

s,
s.

,

f

separate horizontally, in almost a ballistic way:l (t);t ~with
logarithmic corrections!, while Richardson lawl 3(t);t3/2

will dominate in the vertical direction. The modifications th
would be produced in dispersion models, for situations
which turbulence is predominantly mechanical, are clea
worth investigating.

The interest in the existence of Bolgiano scaling is mo
academic, although some application to turbulent bound
layers in stable environments, in the presence of forcing
low frequency waves, is possible@32#. This scaling attracted
some interest a few years ago to explain observations ca
on in liquid helium convection experiments@35#. This ap-
proach has been criticized later by several authors@18,36#.
The result of the analysis carried on here suggests analo
difficulties for the existence of Bolgiano scaling in an idea
ized situation of convective turbulence in an infinite volum
The alternative, however, which is characterized by veloc
and temperaturek25/3 spectra, has difficulties itself due t
the presence of a privileged scale, the Obukhov leng
dominating the dynamics, which weakens the very conc
of an inertial range. GOY model simulations suggest inde
that neither scaling should be observed, rather, under st
conditions, ak22 spectrum for both temperature and velo
ity, with correlation between the two, vanishing at lar
scales, should develop.

The possibility of helical turbulence has sparked recen
some attention in people interested in turbulence con
@37#. A k27/3 energy spectrum, associated with a helic
cascade, would imply a decrease in the energy dissipatio
the order of Re21 with respect to the standardk25/3 situation.
~For equal total turbulent energy in the two cases,eH
;eL21⇒e8; l deH with eH ande8, respectively, the helicity
and energy dissipation for ak27/3 situation, e the energy
dissipation for the correspondingk25/3, andL andl d, respec-
tively, the integral and viscous scales.! The impossibility of a
helicity cascade, suggested by the EDQNM calculation c
ried on here, means simply that ak27/3 could not be obtained
by modifying the large scale forcing, and that action at
scales~or alternatively at all frequency! would be necessary
Hence, turbulence control by forcing the cascade to beco
helicity dominated could be possible only using a feedba
system acting at inertial range frequencies.
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