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The energy spectrum in three examples of inhomogeneous, anisotropic turbulence, namely, purely mechani-
cal wall turbulence, the Bolgiano-Obukhov cascade, and helical turbulence, is analyzed. As one could expect,
simple dimensional reasoning leads to incorrect results and must be supplemented by information on the
dynamics. In the case of wall turbulence, a hypothesis of Kolmogorov cascade, starting locally from the
gradients in the mean flow, produces an energy spectrum that obeys the stantfataw only for kxg>1,
with x5 the distance from the wall, and an inverse power lawkfoy<<1. An analysis of the energy budget for
turbulence in stratified flows shows the unrealizability of an asymptotic Bolgiano scaling. Simulation with a
Gledzer-Ohkitani-Yamada shell model leads insteadko ‘aspectrum for both temperature and velocity, with
a=2, and a cross correlation between the two vanishing at large scales. In the case of non-reflection-invariant
turbulence, closure analysis suggests that a purely helical cascade, associated Witheaergy spectrum
cannot take place, unless external forcing terms are present at all scales in the Navier-Stokes equation.
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[. INTRODUCTION “inertial range” eddies, distributed at all scales.
An extended forcing range develops clearly, also in the

Turbulence in nature is always inhomogeneous; the regpresence of stratification, due to the effect of buoyancy. In
son is the origin of the fluctuations, either in the instability of this case an additional scale, the Obukhov lerigth mark-
flow patterns, or in the presence in some finite volume, oing the transition from mainly mechanical to convection
temperature gradients, chemical reactions, or external stidominated turbulence, becomes important, and the way in
ring. If the Reynolds number is large, however, there arevhich mechanical and convective contributions to the dy-
turbulent fluctuations at scales much smaller than that of theamics balance one another makes a description based on
forcing, and to them, the idealization known as homoge-scaling rather nontrivial.
neous isotropic turbulence can be applied. A third way in which the small scale dynamics of turbu-

In practical applications, what one is interested in is thelence could be modified by processes in the energy range is
effect of turbulence on the mean flow and on transportwhen helicity is fed, together with energy, into the system.
which is parametrized in terms of eddy viscosities and diffu-The importance of this process has been discussed recently
sivities (see, e.g.[1]). In some cases, in order to calculate by Yakhot[7], in the case of shear turbulence. Since the
these quantities, some information on the turbulent energiNavier-Stokes nonlinearity conserves both helicity and en-
spectrum is necessary, and Kolmogorov scdligs usually  ergy, one wonders whether there could exist situations char-
assumed. For instance, in the derivation of Lagrangian diffuacterized by a helicity cascade, analogous to the entrophy
sion models[3,4], the Kolmogorov scaling hypothesis is cascade of two-dimensional turbuleri@10].
present explicitly through the assumption of Markovian ve- All this neglects the presence of coherent structures and
locity increments, at time scales below that of the energyntermittency, which make an approach based on scaling and
containing eddies. a hypothesis of homogeneous and isotropic inertial range

What becomes necessary then is some matching conditiaquestionable, even in the idealized case of spatially homoge-
at the transition from the inertial rangemall scal¢ to the  neous large scalg41-13. The importance of hairpin vor-
energy containing rangéorcing scalé; this is essentially the tices in wall turbulencd 14,15 and, even more, of plumes
problem of connecting a region & % scaling to the peak and effects at the boundary, in convective turbulefiog-
in the energy spectrum. Phenomenological theories hav&8] is well known. Helicity, on the other hand, has long been
dealt with this problen{5]; more recently, the question of suspected to play an important role in triggering intermit-
how fast the effect of inhomogeneity decays at small scaletency in homogeneous turbulenic,20.
has been put under examination both theoretically and using It should be mentioned, however, that with the exception
reduced modelf6,7]. of convective turbulence, intermittency and coherent struc-

There are situations, however, in which the problem oftures seem to produce only minimal effects on energy spectra
how far the inertial range preserves memory of the inhomoand transport coefficients. For this reason, they are not very
geneity of the forcing, becomes particularly serious. interesting when it comes to deriving turbulent models for

The most obvious way this can happen is when forcingengineering applications.
takes place at all scales. Notice that this does not necessarily The purpose of this paper is to study the behavior of the
require the presence, for example, of obstacles of correenergy spectrum in the three examples of inhomogeneous
sponding sizes in the flow. Already in the case of wall tur-turbulence listed. Dimensional analysis must necessarily be
bulence[5] one has mean flow gradients at lengths rangingsupplemented by information on the dynamics, to produce
from the viscous range to the height of the boundary layeracceptable results. In wall turbulence, this will take the form
which leads to a situation of coexisting “energy range” and of hypotheses on the distribution of vortices and on the way
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they are generated. In the case of convective turbulence, an X, |/ I 31
analysis of the energy budget in the Navier-Stokes and the v V*(f‘?
temperature equations becomes necessary to verify the real- v P

izability of different scaling hypotheses. In helical turbu-
lence, the same task is realized by means of closure analysis. /

In the next section, wall turbulence is analyzed, assuming

that at any height a Kolmogorov cascade is generated with ) —_—

the integral scale equal to the height in examination. In Sec. .

[, an analysis of the various possibilities for scaling in “ho-

mogeneous” convective turbulence is carried out, using also X,
results from simulations of a Gledzer-Ohkitani-Yamada
(GOY) shell model of the type introduced by Jensstral.
[21], plus buoyancy couplings. The scaling predicted by Bol-
giano [22,23,8, in particular, is taken under examination.
Section IV is devoted to an analysis of helical turbulence

using an eddy damped quasinormal Markovi&DQNM) will be superimposed mother eddies generated abgwand

closure[24,10. Section V contains the conclusions. which will have therefore sizé,>lo~x;. Also these pro-
' duce cascades superimposed on the original one, with daugh-

ter eddies of sizé¢,, <l ,, indicating

FIG. 1. Generation of Kolmogorov-like cascade; for0, |, is
larger than the reference heigky at which the structure function
S(1,x3) is being measured.

II. WALL TURBULENCE e

To fix the ideas imagine a turbulent flow parallel to a l,o=€"71,=e’"7Xs. 4)
horizontal plane, characterized by a heighand a stress at
the surface(for unitary fluid density v . If the Reynolds ¢ is clear thate=0, but it is also true thap=0. This last

number Re-v, /v is very large, withv the fluid viscosity,  congition means that, at heigky, only mother eddies of size
the mean velocityv will obey to a very good degree of | ,=x3 are present; smaller ones are generated at lower val-

approximation the logarithmic profile laj] ues ofxs.
v _ In the presence of a Kolmogorov cascade, one will have
Vl(x3)=—*ln( * 3), ro<X3<d, (1) that the typical ratio of the velocity inside daughter and
K Bv mother eddies will be proportional td,(, /I ) “exp(-r/l,,),

wherex and 3 are dimensionless constants depending on th&/ith = (xarg) ¥ the viscous scale at heigky. One can then
roughness of the walt,= v/v, is the flow inner length, and Write for the velocity differencey(x) =v(x+1) —v(x):

Xz is the distance from the wall. The law of the wall, Ed)),

does not provide information about turbulent fluctuations be- lpo, v

yond what could be obtained from a mixing length approxi- ~ Vi(X)~ >, T exp(—r/l, ) u(Xx{,pi,0i), (5
mation, indicating by the turbulent velocities ' Pi

A where p<R=In(d/x3), and u(x,x’,p,o) is the normalized
(vivg)=-— YT oxs ! vr=lvr, 2 velocity at positiorx, due to a vortex of typ@o centered at
x" (u; indicates finite difference with respect to the first ar-
where the eddy sizé, the characteristic turbulent velocity gumenj.

v, and the eddy viscosity; all depend on the heighdt. In An assumption on the statistics ofx,x’,p,o) becomes
a scale invariant situation, using Edq$) and(2), therefore necessary. Spatial correlations in this model are
assumed to arise from the finite extension of individual ed-
l(X3)~x3 and vi~v,, (3 dies, while distinct eddies are taken to be uncorrelated. This

. . . leads to the expression
which means simply that gradients of strengtplv* at P

scalex; lead to vortices of siz&; and characteristic velocity , L,
v, . If one imagines that these vortices generate Kolmogoro&u(x’x prou(y.y.p"0"))
cascades, spatially localized in height, some idea of the be-
havior of the energy spectrum can be obtained. ) ) ) C X
This idea is not totally unreasonable, since, during the =v58(p=p")d(o—0")o(X' —y")C| , (6
time it takes the energy to be transferred to the viscous range, P
that is of the order of an integral time, eddies will move at
most by a distance of the order of an integral lengths;. ) ; i X o
Consider then the following picturésee Fig. I at a tion for a single vortex. In ge_ng[agl, )\/ortlces will be distrib-
given heightx,, eddies of sizé,~x; are generated by insta- uted with a densityn(x,p,0)l ;= >, with £, allowing
bility of the mean flow. These “mother eddies” split into for the inclusion of intermittency corrections in the model.
“daughter eddies” of sizé,,<l,, producing a Kolmogorov However, if ro<I,,<l|,<4J, scale invariance implies
cascade; the index indicates the point in the cascade and is= n(I,jlxg), with n(1)~1, while =0 for locally space fill-
the logarithm of the ratio of the size of the daughter eddy tang (nonintermittenk turbulence. Using Eq(6), the two-
that of the original mother eddy. To these, however, thergoint structure function can be computed explicitly:

with C(Ip‘(,l|x—x’|) the normalized C(0)=1] autocorrela-
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R o0
S(|,x3):v;2<v|2>~JO dpfo doF(exd In(l/x3)—p 10-1
-2
2 ro 3/4 o 10
_ = Ao—p)
+a])exp{ 30 (Xs e , (7) 10-3

whereF (@) =1—C(«). Assuming smoothness of the veloc- Ex(s) 10-*
ity profile in an individual vortex and finiteness of its total **

_5
energy leads to the conditions &n 10
10-¢
F(a)=0(a? (a<l),
10-7
lim o?[F(a)—1]=0. (8)
e 108
| | | |
For Re—, one can then obtain asymptotic expressions for 10° 10 10° 10 10*

kd
FIG. 2. One-dimensional energy spectra for four different values
of x3/6. a, x3/6=0.001; b, x3/6=0.01;c, x3/6=0.1;d, x3/8
=0.5. In all casesd/ro=10".

S(1,x3). For 1<x3< 4, the integrals are dominated by the
contribution atp=0 and o=In(x3/l), i.e., the contribution
from the eddies down the cascade generate®;atvhich
have sizd. In this way, Kolmogorov scaling arises:

[\23/]\2 prescribed shape, but the transition to #i€’® range was
5) (x_) . 1<<x3<<é. left out of the description. This phenomenon is explained
3 here as a natural consequence of implementing a Kolmog-
orov cascade in an inhomogeneous turbulence setting; in all

For | >x5 the dominant contribution is from mother eddies cases, hairpin vortices, and coherent structures in general, do
with size xg=<I ,<min(l,8). Due to the uniform distribution not seem to be essential in obtaining such scaling behaviors.

in p, this leads to a logarithmic form for the structure func- ~ The rangel>xs is where turbulence ceases to be homo-
tion: geneous and isotropic. Notice that the divergenc(eu@f as
X3/6—0 in Eq.(9c) forces an implicit assumption of anisot-
ropy in the model, in order to avoid inconsistency with Eq.
(2). Thus, although(v?) diverges asxs/6—0, (vqv3) re-
mains equal to»i ; this result can be obtained assuming that
the velocity of vortices generated much aboeis almost
parallel to the wall ak;. Hence, while(v?) receives contri-
butions from all vortices, up to siz& (v,v3) receives con-
with e(x3/1) at mostO((xs/1)?). The coefficientsa andb  tribution only from vortices up to size,.

and the various higher order terms in Eq8a—(9¢), all Although essentially kinematic, this model is dynamically
depend on the detailed shape of the functi@ia). The one-  consistent. In spite of the fact that all cascades overlap in
dimensional energy spectrui5] is Ex(xs)=f'7[S(»,Xs)  space, the dominant interactions appear to be those among
—S(I,x3)1e'dI~|aS(k~1,x3)/0k| in the inertial range.
Hence, one has a standad®? scaling forl <x5 and ak !

2/3
S(I,x5)=a

o

X3

2/3
(_5) . X3<<1<§, (9b

S(I,Xg)zgln(l/bX3)+o(

3
S(I,Xg):Eln(gle3)+€(X3/|), X3<5<|, (90)

scaling whemnxz<<l < §. A definite expression for the energy 10° | —
spectrum can be obtained fixing the form of the autocorrela-
tion. TakingC(a)=exp(—a?), one obtains Lot b i
R o 5
Ek(X3)=7rllzviX3f dpf doexpgp—so 10-2 F _
0 0 3 Ei(zs)
v2§
(kX3)2 2 o 34 -3 | _
% a2pmo) | = 3/4(o—p) 10
7 e Xa e . (10
A plot of this spectrum for different values &£/ 68 is shown 1074 - 7]
in Fig. 2. A fit of wind tunnel data, taken frof26], is shown
in Fig. 3; the data correspond to values of the ratigss 10-5 + | | |
=0.01 andr,/6=0.001, i.e., to the experiment with Re Lo-1 100 Lot 102 108
=7076 andy™ =28 illustrated in Fig. 1 of that reference. %
As discussed i126], v; samples in the range>xs, ve- FIG. 3. Fit of wind tunnel data forxy/6=0.01 andrq/é

locities corresponding to vortices generated much ab@ye ~0.001. The curve is shifted to the left to overlap with the data,
while for |<xs, it samples the daughter eddies of size corresponding to a shift byIn(3), of the limits of integration irp,
generated in the cascade starteaatin [27], ak ™! scaling  in Egs.(7) and(10). Physically, this would correspond to a transi-
was obtained by means of a hierarchy of hairpin vortices ofion to anisotropy at=23x.
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vortices of similar size, as in standard Kolmogorov theory,turnover frequencyw,~1(v2)*? and considering scalek
and belonging to the same cascade. A rough argument coutduch larger than the dissipation lengths ¥aand 6, we have
be the following. The relevant strain over an eddy of size from Eg. (113:

from a cascade starting at heighyt is produced by eddies of
size I'=l. This strain will be of the order of:
v, 1" 717 1x5) Y2 with x4 the height of generation of the sec-
ond cascade. lk;<xs;, however, the volume in which the
interaction takes place will be reduced kY/x; and the ef-  while, from Eq.(11Db):

fective  strain  will be of the order of o 2 ) o
min(1x5/x3z)v, 1" "1(1"/x5) 3. The effective strain will be o (v16)20"(v) and w(6)~€_0'(v6).
maximum then foxz=x35 andl=1" corresponding to inter-
action with vortices of the same size and belonging to th
same cascade.

wfoD)~ o (0i)  and woi6)~ o (6), (14)

(15

®he question marks in E15) indicate places in which the

relation between terms is ambiguous. It appears that the am-

biguity lies in the source ter®'v; in Eqg. (11b. One sees

Ill. THE CASE OF “INFINITE SPACE” immediately that the scaling described in Etp) is obtained
CONVECTIVE TURBULENCE when the term in®’ is negligible in Eqs.(11b) and (15).

Stratification in a fluid produces buoyant forces that/ntroducing the Obukhov length
couple velocity and temperature in the Navier-Stokes equa- o\ V4
tion. In the limit of weak stratification in a large volume, one L, = 6%)/2@5/4( _> ,
can adopt the Boussinesq approximat[&i, in which the g
buoyant force in the Navier-Stokes equation, and the produc- ) .
tion term in the temperature equation, are linearized respe@ne realizes from Eqg12) and(15) that the condition of the

tively in the temperature and the vertical velocity fluctuation.n€gligible ®” term is equivalent té<L, . Thus, one has a
For a unitary density medium: source of temperature fluctuationd &L, , whose energy is

transferred to smaller scales by action of the convective term
d 5 . v- V4. These fluctuations provide the forcing for the velocity,
STV V|v=VP+1Viv—g0 “e30, (118 through the buoyant terme;#/®, in Eq. (11a.
In order for a cascade of this form to be present, the
transfer of kinetic energy must be negligible, or equivalently,
0=0V20+0"v;. (11b  the frequencyw, (which is the strain felt by eddies at sch)e
must dominate the one that would be produced in a Kolmog-
Here, o is the molecular diffusivityg is the gravitational ©rov cascade, indicating wit the rate of kinetic energy
accelerationg and® are the fluctuating and mean potential Production at the largest scales:
temperature, whil®'=d®/dx,;. The equations are linearly Ly Y82y, A 23, |~ 1323 1
stable for®’>0; in this case, external forcing is necessary @ITUL B >€ UL, b« Y
to achieve a stationary turbulent state. S - o
In homogeneous isotropic turbulence, one derives KolWhich impliesI>L, . Thus, the two conditions of negligible
mogorov scaling[2], using dimensional analysis with the ©' in Eq. (15 and dominant buoyant force in E¢L4) re-
quantities that are available: the schlehe velocity differ-  Strict the possibility of Bolgiano scaling at most to a finite
encev, and the mearikinetic) energy dissipatiore; this ~ range around, . _ o
leads to the well-known resuv2)~ (el )22, In the case of a An alternative situation, in which Klnetlc energy f!ows
stably stratified medium, in the presence of mechanical forctowards large scales, has been considere8). In this
ing, Bolgiano[22,23 hypothesized an alternative situation, ¢2S€; the condition provided by E(L7) is not necessary
in which, potential energy transfer due to buoyancy forces@nymore; however, the condition of negligilfl still forces
rather than kinetic energy transfer, governs turbulence dyBOIg"'?‘”O scaling, to the rande<L, . Now, this is the range
namics. Dimensional reasoning with the quantities availabld? Which the equation for the velocity decouples from that

(16)

i \%
— 4V
at

in Egs. (119 and(11b), leads then to the scalingg] for the temperature, and it is_difficult to_see a mechgni;m
whereby buoyancy could modify the nonlinear interaction in

, g\4s . g\ s 55 a7 such a way as to invert the direction of the energy transfer. If
(v7)=Cyy 0 € 1%%, (v16))=Cyy ® 695| : one restricts to this range, and maintains a situation of for-

ward energy transfer, the decoupling forces the temperature
g\ 25 to be advected like a passive scalar, which results in the
<0'2>:C“”’(@) €512, (12 well-known Kolmogorov-Corrsin scaling29]:

2\ _ 2/3 — 1/2_1/62/3
wheree, is the dissipation of temperature fluctuations: (0)=Cou(e)™, (vi6))=Cype e ™™,
€=V 0% (13 (67)=Cggege A, (18

It is interesting to carry out this dimensional reasoning, di-The only way to obtain a power law fluctuation spectra for
rectly inside Eqs(113 and(11b). After introducing the eddy |>L, remains then, that
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(v16)~9 'Oe~0' ey, (19 ' ' ' l | |

This would lead again to &’ spectrum fov?) and( 62); in 100 P -
this case, however, there would be a privileged scale, the

oL i

Obukhov length, which would fix the amplitude of the cross 10 ) u

correlation(v, ,): 10-2 2 |
10-3 h

<U| 0|> L 23 b
T @ e :
(<U|><0|>) c
1075 S
This leads to the situation of correlations betwegrand 6, 106 L ]
being the strongest &t-L, and decaying at larger scales. ! ! ! ! ! !
From these observations, it is clear that scaling behaviors 100 10t 102 10®  10% 10°
should not be expected fbr-L, . An interesting question is o

a GOY model would behave in the presence of buoyancy-nstable conditions; values of the parameters @re0.01, 5=
GOY models(see[30] and references thergipresent a cas- . 0-2- »=¢=10 " no external forcinga: (ITol%)s bz (unl); €
cade of energy along a linear chain of coupled ordinary dif{|UnTrl)- The buoyancy terms become of the same order of the
ferential equations for the complex variablgs, which are others only fork,=<1.

the analog of the velocity of eddies at scalgs 2™ " in real .
turbulence. These models have attracted great attention, di8 mber, allowed better control &, . WhenN, was suffi

to the coincidence of the intermittent properties of the mo-Clently large, neither Bolgiano scaling nor the situation de-

: . picted in Eq.(18) took place, rather, a combination of the
ments(|u,|") and those of the structure functiogs;') in . 1 .
. . two, with steep~k™*, overlappingT andu spectra, and an
real turbulence. Jensea al.[21] have derived a generaliza- b= ppIng P

. : Imost constant cross correlation, T,,) (see Fig. 5.
tion to th_e case of a passive sca_llar advected by a turbuler?t An attempt has been carried also to generate a backward
velocity field. It is easy to include in their model the effect of

. ) z kinetic energy cascade, using small scale for¢thg forced
. 1
buoyancy; the resulting set of equations reakis(, *) shell wasn=20). A physical interpretation of such a condi-

tion could be the presence of plumes generated elsewhere in

— k2 =i *
(0= vKn)Un=1Kn(AUn+1Un 2+ DUy -yl 1 Clp—1Un—2) the fluid, in some steep thermal layer. Using E(l) and

—aT,+1,, (22), the outcome was, howeverka®? spectrum in all situ-
ations.
(¢9t—Ukﬁ)Tn=ikn[en(Un—1Tn+1+ UnstTho1) _ On_e can compare the be_haviorh&bi in the t\_/vo stabil_ity
situations, looking at the ratios of the fluctuation amplitudes
+9(Un—2Th-1FtUn-1Th-2) of the buoyancy termaT,, and Bu,,, to those ofd,u,, and

d;T,. One sees in Fig. 6 how in the stable case, buoyancy
remains dominant over the whole inertial range, while the
(21 nonlinearity dominates the dynamics in the unstable case.

In nature, of course, things go differently. First of all, the
largest available scall corresponds to the size of the sys-
tem. In the unstable case, steep thermal boundary layers de-
velop rapidly and an approximation of constant temperature

+h(Uns1Theot Unso o) 1* + Bup

for n=1,2,... N, where the parameters,b,c,e,g,h are
given by

1
a=1, b=c=g=-e=—-h=-; (22
2 107t

1072

and variablesu,, and T, in the nonlinearities are set identi-

cally equal to zero fom<1 andm>N. The choice here is 1073
opposite to that of28], in the sense that it has been preferred 10-4
not to tamper with the nonlinearities, and to leave them in i
the same form as without buoyancy. However, also in this 1
case, some interesting results are obtained. 10-°
Equations21) and(22) have been integrated numerically 10-7

for both stable and unstable conditions. In the stable case, a
constant forcing ,=(1+i)x 10 35,4, has been used to sus-
tain fluctuations.

In the unstable case no external forcing was present, and 10710 : : : :

. . . -1 0 1 2 3 4
the fluctuations organized in such a way to push the 10 10 10 Ky 10 10 10

Obukhov scaleN,, =logy(e; 8%~ 1'% towards the lowest FIG. 5. GOY model simulation of convective turbulence under
available shell; a Kolmogorov cascade ensued in all casegable conditions; values of the parameters areg=10; v=0
(see Fig. 4. =107, f,=10 3(1+i) Spa- @: (U Tol); b: (Jun|?); €2 (| T4|2). The

In the stable case, the presence of two additional paranmbuoyancy terms are of the same order of the others, over the whole
eters with which to play, the forcing amplitude and waverange ofk,, down to the dissipation scale.

10-8
10-°
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10t T T T T gests the possibility of a helicity cascade with no energy
10° a | transfer, given appropriate conditions on the forcing.

Helicity, however, has the peculiarity of being a nonposi-
tive defined pseudoscalar. Lack of positive definiteness im-
plies, in particular, that any triad of interacting modes can
exchange helicity in an arbitrary way, thus providing a
source of helicity transfer fluctuations.

This effect turns out to be important in GOY models;
even in the case of maximum injection of helicity, for a
given energy injection rate, it can be shown that the amount

10t
102
1073
104
10-°

107 of the GOY equivalent of helicityH = = ,( — k;)"|ug|2 [20],
1077 which is produced by fluctuations, is much greater than the
10-% ! ! ! ! one coming from forcing34]. Since the variable,, in GOY

107! 10° 10! . 102 10 10* models mimics in a surprising way the velocity inside indi-

vidual scald , eddies, this may be a serious indication of the
FIG. 6. Plots of the ratiost,=(|aT|?/(|dun|?) and r,  impossibility of a helicity cascade.
=(|Bun?){|:Tol?) Vs k,. a: ry; stable.b: ry; stable.c: ry; un- Anyway, such a cascade seems impossible, also in a
stable.d: r,; unstable. purely “mean field” description, with a helicity transfer to
) ) ) small scales, assumed constant over the whole space.
gradient ceases to be applicable. Thus, the left portion of the The standard sequence of arguments, leading to Kolmog-

spectra in Fig. 4 is not particularly meaningful, and the pre-orov scaling, can be carried out, assuming a constant helicity
diction thatL, —1o under unstable conditions should not be flyx ¢, to small scales; indicating withl,~1~*v? the con-

trusted. In fact, in convective atmospheric tgrbulence, ONgent of helicity at scalé one can then write

hasL, <l,, and a large scale, buoyancy dominated range is

indeed preser(t31]. en~wH~1 27 =const=v,~ €127 (24)
Same amount of difficulty occurs in the treatment of. . . -

stable environments. In this case the problem is the idea of ! plying expressions for the energy and helicity spectra and

purely large scale mechanical forcing. It is well known that, or the eddy turnover frequency:

in these conditi_qns, the large scale modes in turb'ulent shear Ek:cleﬁ’sl(7’3, szczeﬁ’3k*5’3, wkzcseﬁﬂklls'

layers are stabilized by buoyancy; thus, the peak in the forc- (25)

ing is moved td ~L, , and a range like that of Fig. 4 isnot ) . o )

generated31]. However, a purely large scale forcing can bet is possible to obtain energy and helicity balance equations

generated, if low frequency waves are present in the flows; i'Sing statistical closure, starting from the expression for the

this case, a turbulent spectrum extending to the buoyancyelocity correlationUy =(|v,v’,]):

dominated region<L, becomes possible agaisee, e.g., KiKi
[32]). 20U =k ?PI(E+k el k'H,,  PI(k)=01— 7.
IV. POSSIBILITY OF A PURELY HELICAL CASCADE (26)

1Lesieur has derived such balance equations within the
EDQNM closure[10]. In this kind of closure[24,1Q, the
hird order correlationgvvv), which enter the equation for
V. are approximated by: (vvv)=(v®p@y®)
+ (v Oy My Oy 4+ (10 (0, W) with v 1) the first order per-
1 turbative solution to a modified Navier-Stokes equation, with
H=§f dxv(x)-[VXV(x)]. (23)  the viscous termwk? replaced by the eddy turnover fre-
quencyw,. Thev©® are taken uncorrelated, so that the re-
In many ways, helicity is the counterpart in three dimensiongsulting 4-point correlations split into products of 2-point cor-
of two-dimensional vorticity, and a natural question to ask isrelations. Furthermore, the approximatiéfv,(t)v’ (0)])
whether three-dimensional turbulence may exhibit multiple=U} exp(—wt|) is adopted.
cascades, as it happens in two dimensions. The ability of The EDQNM equations for the energy and helicity bal-
helicity to hinder energy transf¢B3,10, in particular, sug- ance read therefold 0]

The last situation that is taken into consideration is that o
non-reflection-invariant turbulence. It is well known that, be-
yond energy, the nonlinearity of the Navier-Stokes equatio
has a second global invariant, the total helicity:

9 2 k 2 2 1 2 2
E‘FZVI( Ek: A dpdq@kpq ﬁbkpqEq(k Ep_p Ek)_ p2q Ckquq(k Hp_p Hk) (278)
k

and

g 2 k 2 2 k2 2 2
E"‘ka Hk: R dpdqﬁkpq ﬁbkpqEq(k Hp_p Hk)_ Eckquq(k Ep_p Ek) , (27b)
k
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where separate horizontally, in almost a ballistic wagt) ~t (with
logarithmic corrections while Richardson lawl 4(t)~t%2
will dominate in the vertical direction. The modifications that
would be produced in dispersion models, for situations in
which turbulence is predominantly mechanical, are clearly
Ckpg= z(1—y?) (28)  worth investigating. _ _ o
The interest in the existence of Bolgiano scaling is more
with A, the domain in whictk, p, andq can be the lengths academic, although some application to turbulent boundary
of the sides of a triangle, and y, andz the cosines of the layers in stable environments, in the presence of forcing by
angles opposite to these sides. low frequency waves, is possibl82]. This scaling attracted
The conditione=const in Egs(24) and (25) and con- Some interest a few years ago to explain observations carried
servation of helicity triad by triad guarantee that the spectr&n in liquid helium convection experimenf85]. This ap-
and frequencies of Eq25) provide a stationary solution for proach has been criticized later by several autti®836.
Eq. (27b for any value of the coefficients,. The energy The result of the analysis carried on here suggests analogous
balance, which is given by E¢R79 fixes instead, at station- difficulties for the existence of Bolgiano scaling in an ideal-
arity, the ratio of the two coefficients, andc,. Numerical  ized situation of convective turbulence in an infinite volume.
integration of that equation leads then to the result The alternative, however, which is characterized by velocity
and temperaturé >3 spectra, has difficulties itself due to

_ p
Opa= (@t wpt wg) 7, bkpq:E(Xer %),

C, the presence of a privileged scale, the Obukhov length,
0_123'316' (29 dominating the dynamics, which weakens the very concept
of an inertial range. GOY model simulations suggest indeed
However, from the definition of helicity, one has that neither scaling should be observed, rather, under stable
conditions, ak~2 spectrum for both temperature and veloc-
k™Y H | =27k(|[ik X v ]-V_ i) < Ex=2mk¥(|vy|?), ity, with correlation between the two, vanishing at large

scales, should develop.

The possibility of helical turbulence has sparked recently
some attention in people interested in turbulence control
[37]. A k™ energy spectrum, associated with a helicity
cascade, would imply a decrease in the energy dissipation of
the order of Re* with respect to the standakd > situation.

V. CONCLUSIONS (For equal total turbulent energy in the two cases,

-1 1 : ' : s
The aim of this paper was to obtain some information on~ €& =€ ~laén With e ande’, respectively, the helicity

- . . 77/3 . .
the effect of large scale flow inhomogeneities on the form of21d energy dissipation for k™ situation, e the energy

scinafi R
the energy spectra in turbulent fluids. Some idealized situadiSSiPation for the correspondirkg ™", andL andl, respec-
vely, the integral and viscous scalg$he impossibility of a

tions have been studied by means of simplified models anﬁ - .
closure analysis. The point in common in the three inhomoN€licity cascade, suggested by the EDQNM calculation car-
i 713 could not be obtained

geneous turbulence situations considered is that simple dfied on here, means simply thaka’ :
mensional reasoning either gives wrong answers or does ngY Medifying the large scale forcing, and that action at all
lead to any answer at all. Of course this was something to bgcales(or alternatively at all frequengywould be necessary.

expected and, in a certain sense, there is nothing deep in tHiEENCe, turbulence control by forcing the cascade to become
result. However, the practical consequences are important.N€licity dominated could be possible only using a feedback
The analysis carried on here clearly shows that4  SYStém acting at inertial range frequencies.

range is a universal feature of mechanical turbulent layers,
which is independent of the presence of coherent structures.
If one is interested in diffusion in wall turbulence situations, | would like to thank Umberto Giostra and Federico Tos-
ak~! range at scaldex;<1 clearly makes a difference, with chi for interesting and helpful conversation. Part of this re-
respect to &> spectrum, extending down to the inverse of search was carried on at CRS4, and | would like to thank
the boundary layer thickness. Particles at distdmers; will Gianluigi Zanetti for hospitality.

which implies|c,|<c;. Thus, Eq.(29) cannot be satisfied,
and a helicity cascade of the type described by E2%.and
(25) does not seem to be possible.
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